
Developing Morph-Analyzer for Urdu

Using Apertium: Some issues

Shahid Mushataq Bhat

Shahid.bhat3@gmail.com

Linguistic Data Consortium for Indian
Languages (LDCIL)

CIIL, Mysore

Content:

�Introduction

�Morphological features of Urdu

�Apertium (LT-toolbox): Some background

�Computing Noun-morphology using LT Toolbox

�Split-Orthography of Urdu

�Conclusion

Introduction:
� Automatic morphological analysis is the fundamental task

in NLP that can be employed in enhancing the accuracy of
POS-taggers, Chunkers, Parsers and Information retrieval
systems.

� Computational morphology models the internal structure of
words i-e the way; words are built out of minimal units
called morphemes. called morphemes.

� Most of natural languages construct words by concatenating
morphemes together in strict orders. Such Concatenative
morphotactics is highly productive, particularly, in
agglutinative languages like Tamil, Kannada, Manipuri, etc
but in some languages like Hebrew and Arabic (Semitic
languages) infixation is the main morphological operation
(instead of concatenation), constituting Non-Concatenative
(Templatic or Root & Pattern) morphology.

Continues ……

� Beyond this Concatenative and Non-Concatenative
polarity, Urdu nouns (unlike nouns of other Indian
Languages) show the interplay of both types of
morphologies. So, morphological structure of Urdu
like Tagalog (a language of Philippines) can’t be
computed adequately unless dual nature of its computed adequately unless dual nature of its
morphology is not taken into account.

� “The morphotactic limitations of the traditional
implementations are the direct result of relying solely
on the Concatenative operations in morphological
descriptions” (Beesley & Karttunen)

Continues ……

� Corpus based analysis of about 5000 words and native
speakers intuitions have revealed the fact that about
50% Noun-paradigms (inflectional) belong to Non-
Concatinative morphology but about 50% of Noun-
paradigms (Inflexional), almost all Inflexional Verb-
morphology and whole derivational morphology of morphology and whole derivational morphology of
Urdu is concatinative in nature and can be properly
handled by LT-Toolbox, though derivational-
morphology poses tokenization problems due to split-
orthography.

Continues ……
� LT Toolbox is lacking features for dealing with stem-

internal variation, diphthong simplification, and
compounding (F.M.Tyers, L. Wiechetek & T.Trosterud,
2009).

� Therefore, Morphological analyzer of Hindi like other
Indian languages can be easily developed by using LT-
toolbox, as their morphology is purely concatinative in toolbox, as their morphology is purely concatinative in
nature but Morphological analyzer of Urdu can’t be
developed easily due to the non-concatinative nature
of its many noun paradigms and the split-othography
(tokenization problem).

� Such deviation from the nature of other Indian
languages is due to the fact that Urdu is replete with
the borrowings of Persio-Arabic loan words.

Morphological features of Urdu

� Urdu belongs to the Indo-Iranian branch of the Indo-
European Language Family. It is morphologically rich
language with highly productive inflectional and
derivational morphology.

� Urdu nouns show agreement for number, gender and case.
They also show diminutive and vocative affixation.
Moreover, the nouns show derivational changes into
adjectives and nouns.adjectives and nouns.

� Adjectives show similar agreement changes for number,
gender and case.

� Urdu verbs inflect to show agreement for number, gender,
honorificity and case. In addition to these factors, it also
has different inflections for infinitive, past, non-past,
habitual and imperative forms. All these forms (about 20 in
total) for a regular verb are duplicated for transitive and
causative forms, thus giving a total of more than 60
inflected variations.

Continues………..

� The paradigms which are common to Urdu-Hindi like
“laD’kA, laD’ki, kitAba, etc” can be easily defined in LT
Toolbox but Non-Concatinative Paradigms (NCPs)
where words show stem-internal variation can’t be
defined as such.

� Nouns belonging to NCPs don’t show any variation
when oblique forms are to be derived from the direct when oblique forms are to be derived from the direct
ones. Therefore, in NCPs there is no marked difference
between direct and oblique forms (e.g. sg.dir = sg.obl
and pl.dir = pl.obl).

� However, many Nouns can produce plural forms both
concatenatively as well as non-concatenatively. e.g.
“shaqala” has both “shakalEN” as well as “AshqAla” its
plural forms.

Continues………..

� waqata

awqAta

� farada

afrAda

� qsama

aqsAma

� mazmUn

mazAmIn

� khatUn

khawAtIn

� shetAn

sheyAtInaqsAma

� qadama

iqdAma

� madada

imdAda

� maraza

imrAza

sheyAtIn

� mazhab

mazAhib

� sharat

sharAit

Apertium or LT-toolbox: Some background

� Apertium or LT Toolbox is an open-source platform for
creating rule-based machine translation (MT) system
(ArmentanoOller et al. 2006; CorbíBellot et al. 2005).
It was developed through a number of projects like
“Open-Source Machine Translation for the Languages
of Spain” and “EurOpenTrad: Open-Source Advanced
Machine Translation for the European Integration of
the Languages of Spain” by the funding of Spanish
Machine Translation for the European Integration of
the Languages of Spain” by the funding of Spanish
Ministry of Industry, Commerce and Tourism.

� It was initially designed for closely-related Romance
languages pairs (such as Spanish-Catalan, Spanish–
Galician, Spanish–Portuguese, Czech–Slovak,
Swedish–Danish etc.), but has also been adapted to
work better for less related languages.

Continues………..

� It consists of following series of pipelined lexical
processing modules: Deformatter, Morphological
analyzer, Categorical disambiguater, Structural and
Lexical Transfer module, Morphological generator,
Post generator and Reformatter.

� It was decided that LT Toolbox can be used to develop � It was decided that LT Toolbox can be used to develop
morphological analyzers for Indian languages
including those languages that have heavily borrowed
from Arabic and Persian (e.g. Urdu, Kashmiri, etc).
The only effort that has to be made is to add language
specific data to the readymade tool.

Continues………..

� Since, the tool will support Roman characters only; a
transliteration scheme has to be followed that
transliterates the scripts of Indian languages into
Roman script, a well defined Transliteration Scheme is
prerequisite for computing morphology using LT
Toolkit .Toolkit .

� But it should preserve the writing conventions like
intra-word spacing in multi-Token words .

� Using Transliteration to handle split-orthography
(Tokenization Problem) would be simply evading the
problem rather than solving it.

Computing Noun-morphology using LT Toolbox

� Computing noun-morphology of Urdu using LT
Toolbox is in itself an incomplete task as only
concatenative morphology seems to be computable
using this tool and the techniques presently in hand.
However, the process involves the following steps:

Step-1. All the symbols <sdefs> (Characters, Categories, Step-1. All the symbols <sdefs> (Characters, Categories,
Subcategories, Attributes and Attribute values) that
will be used in the scheme are to be defined in the in
the XML code of Linux compatible LT Toolbox as
shown below:

Continues………

<?xml version="1.0"?
<dictionary>

<alphabet>abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-
'</alphabet>

<sdefs>
<sdef n="cat:N" c="Noun"/>
<sdef n="subcat:NC" c="Common noun"/>
<sdef n="subcat:NP" c="Proper noun"/>
<sdef n="subcat:NV" c="Verbal noun"/><sdef n="subcat:NV" c="Verbal noun"/>
<sdef n="subcat:NST" c="Spatio-Temporal noun"/>
<sdef n="gender:m" c="masculine"/>
<sdef n="gender:f" c="feminine"/>
<sdef n="gender:0" c="feminine"/>
<sdef n="number:sg" c="singular"/>
<sdef n="number:pl" c="plural"/>
<sdef n="case:d" c="direct"/>
<sdef n="case:o" c="oblique"/>
</sdefs>

Continues………

Step-2. All the possible paradigms (<pardefs>) of a language
are to be defined as shown below. But only the
Concatenative morphological paradigms can be defined.
The non-Concatenative paradigms can’t be defined which
is a main bottleneck of using LT Toolbox.

� In this step, a transliterated word is splitted into the left-� In this step, a transliterated word is splitted into the left-
unchangeable string (base or lemma) and the right-
changeable string, separated by a slash. The changeable
string which is on right side of the slash (splitter) gets
substituted while generating the all possible forms of the
same word as shown below:

Continues……..

<pardefs>
<pardef n="ladk/A__nm">
<e><p><l>A</l> <r>A<s n="cat:N"/><s n="subcat:NC"/><s

n="gender:m"/><s n="number:sg"/><s n="case:d"/></r></p></e>
<e><p><l>E</l> <r>A<s n="cat:N"/><s n="subcat:NC"/><s

n="gender:m"/><s n="number:sg"/><s n="case:o"/></r></p></e>
<e><p><l>E</l> <r>A<s n="cat:N"/><s n="subcat:NC"/><s

n="gender:m"/><s n="number:pl"/><s n="case:d"/></r></p></e>
<e><p><l>OM</l> <r>A<s n="cat:N"/><s n="subcat:NC"/><s <e><p><l>OM</l> <r>A<s n="cat:N"/><s n="subcat:NC"/><s

n="gender:m"/><s n="number:pl"/><s n="case:o"/></r></p></e>
</pardef>
� <pardef n="baCC/ah__nm">
� <pardef n="ladk/I__nf">
� <pardef n="AsmAn/a__nm">
� <pardef n="Upar/a__n0">
� <pardef n="kh'ayAl/a__nm">
� <pardef n="rAt/a__nf">

Continues……..

� Step-3. In this step lemmatization has to be done
manually and computationally feasible (compromising
linguistic feasibility) lemmas are to be entered in the
dictionary along with the paradigm name (already
defined), they follow.

� Sufficient number of dictionary entries is to be made � Sufficient number of dictionary entries is to be made
in order to assure wider coverage of the morphological
analyzer/generator.

� Computationally feasible lemmas and their paradigm
name assignment is show below in the XML coded
dictionary.

Continues……..

</pardefs>
<section id="main" type="standard">
<e lm="ladk"><i>ladk</i><par n="ladk/A__nm"/></e>
<e lm="kut"><i>kut</i><par n="ladk/A__nm"/></e>
<e lm="kang"><i>kang</i><par n="ladk/A__nm"/></e>

<e lm="shikaw"><i>shikaw</i><par n="baCC/ah__nm"/></e>
<e lm="CamaC"><i>CamaC</i><par n="baCC/ah__nm"/></e><e lm="CamaC"><i>CamaC</i><par n="baCC/ah__nm"/></e>
<e lm="baCC"><i>baCC</i><par n="baCC/ah__nm"/></e>

<e lm="ladk"><i>kang</i><par n="ladk/I__nf"/></e>
<e lm="murg"><i>murg</i><par n="ladk/I__nf"/></e>
<e lm="khidk"><i>khidk</i><par n="ladk/I__nf"/></e>

</section>
</dictionary>

Split-Othography : A Tokenization problem

� There are some sort of splitting tendencies in the
written language in those languages that follow Persio-
Arabic script due to which derivational morphemes
are written as separate tokens.

For instance, adjectival morphemes are written
separately from their bases as given below:separately from their bases as given below:

nigAr e.g. mazmOn –nigAr
	��ن ���ر

khAnah e.g. kutub- khAnah
 ���ہ��

nAk e.g. khof- nAk ��� ��ف

gAr e.g. gunah- gAr ��ہ ۔��ر

Conclusion:

The above discussion reveals that developing a Finite-
state-morphological-analyzer for Urdu using LT
Toolbox is not as realistic task as it is for Hindi and
other Indian languages. Handling infixation of Urdu
needs entirely different approach. Since infixation is
the property of Semitic languages (like Arabic,
Hebrew) that use several tiers to compute morphology.
the property of Semitic languages (like Arabic,
Hebrew) that use several tiers to compute morphology.
For instance (McCarthy, 1981) uses four tiers, one for
prefixes, one for roots, one for template (consonant
pattern) and the last one for vocalization (vowel
pattern).

Any Question or Comment:

??

Thank YouThank You

